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Extension of an hnproved One-Fluid Conformal 
Solution Theory to Real Fluid Mixtures with 
Large Size Differences t 

M. L. Huber 2 and J. F. Ely 2 

Conformal solution theories have been shown to be inadequate as the size ratio 
of the molecules in a mixture increases. We present an improved van der 
Waals-1 fluid conformal solution theory which incorporates a correction term 
developed using statistical mechanical perturbation theory. The correction 
addresses the effect of different size molecules on the Helmholtz free energy of 
the mixture. Results of the new model are compared with other conformal 
solution theories for model Lennard~ones systems. We also show how to 
extend the model to perform computations on real fluid mixtures. Results for 
selected hydrocarbon mixtures are given. 

KEY WORDS: conformal solution theory; corresponding states; Lennard- 
Jones mixtures. 

1. I N T R O D U C T I O N  

The most  successful predictive models for the calculat ion of the equi l ibr ium 
the rmodynamic  properties of mixtures are those based upon  a correspond- 
ing states or conformal  solut ion principle. When  the mixture contains  

molecules which do not  differ much in size, the van der Waals  one-fluid 
(VDW-1)  approx imat ion  developed by Leland and  co-workers [1]  has 
been shown to perform well I-2-4]. When  the molecules in the mixture do 

have large size differences, studies have shown that  these types of models 

tend to fail [5, 6]. Several approaches have been used to improve confor- 
mal  solut ion models, such as the use of theoretically derived mixing rules 
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[7], and the use of a correction factor to the mean density approximation 
(MDA) of Mansoori and Leland [8], developed using statistical mechani- 
cal perturbation theory [9]. In this work we present a new conformal 
solution theory which incorporates the VDW-1 concept and statistical 
mechanical perturbation theory. 

A conformal solution is one in which all the molecules obey the same 
reduced intermolecular potential function, which may be written as the 
product of an energy parameter and a universal function F. A simple exam- 
ple, which is used in this work, is the Lennard-Jones 12-6 potential 

uo.(r ) = 4e~ [ ( o - q / r )  12 - -  0 7 q / r )  6 ] = 8uF(r/(7o. ) (1) 

where e,j and o-~ are the energy and distance parameters for the potential, 
and F is a universal function for all species. Given this type of potential, 
simple scaling arguments applied to the canonical ensemble partition func- 
tion enable us to express the properties of fluid i in terms of some known 
reference fluid properties [ 10 ]; 

A ~(T, V) = f . A  ~o(T/f., V/hii ) (2) 

and 

Z~(T, V)= Z~(T/f . ,  V/h.) (3) 

where A r and Z r denote the residual Helmholtz energy and compressibility 
factor, the subscript 0 refers to the reference fluid, and the factors f .  and 
h.  are called equivalent substance reducing ratios, defined as h..= (aiffaoo) 3 
and f . =  (~iffeo0). Equations (2) and (3) are an expression of the law of 
corresponding states. Since all points on the P V T  surface of any conformal 
substance may be represented by scaling the P V T  surface of the reference 
substance, we may express the equivalent substance reducing ratios in 
terms of the critical volumes and critical temperatures, h . =  (vcr/v~ r) and 
f . =  (T~r/T~r). If the fluids are not conformal, we can use the concept of 
extended corresponding states, developed by Leland and co-workers 
[11-13], which introduces the use of shape factors 45. and Oii. These are 
density- and temperature-dependent factors which force conformality by 
modifying the equivalent substance reducing ratios, 

hii = ( vcr/v~ r) ~ii (4) 

fi, = (Tcr/r~ r) Oii ( 5 )  

Extension of these scaling arguments to mixtures is not successful since 
the potential energy depends on the assignment of the positions of the 
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molecules in each configuration. It is therefore necessary to adopt empirical 
combining and mixing rules, such as the Lorentz Berthelot combining 
rules, 

f i j=  (f.fjj)l/2 (1 - k u )  (6) 

h o --- 0.125 (h]/3 -[- h)/3) 3 (1 - lo) (7) 

where k o and l U are binary interaction parameters. For mixing rules, the 
van der Waals mixing rules, 

h~= E Z xixjh~ j (8) 
i j 

and 

f~hx= ~ Z xixjf~jh ~ (9) 
i j 

are often used. Corresponding states may then be applied to the mixture 
using 

Ar(T, V)= fxA~o(T/fx, V/hx) (10) 

and 

Zr(T, V) = Z;(T/fx, V/hx) 

This is known as the van der Waals one-fluid model. 

(11) 

2. IMPROVED VDW-1 THEORY 

The approach to improving the VDW-1 fluid theory is similar to the 
method used to develop an improved n-fluid theory in Ref. 9. The essential 
idea is to use perturbation theory to correct conformal solution theory, 
rather than to express thermodynamic properties solely in terms of pertur- 
bations about hard spheres. 

The perturbation theory expansion of a mixture's Helmholtz free 
energy to order 1/T is [-14] 

r [ j A mix A mix 2~p co 
R r  Z E x i x l  "s'r r 2 gij [ , P, {dml} )  dr (12)  

i j dlj 

where R is the gas constant, k is the Boltzmann constant, g is the radial 
distribution function, d denotes an effective hard sphere diameter, and the 
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superscript HS refers to a hard sphere property. A similar expansion for a 
hypothetical pure fluid yields 

Ax AxHS'r I- ux(r) Hs dx) r 2 dr (13) 
- g x  ( r , p ,  

R T  R T  ~ ax 

where the subscript x denotes the hypothetical pure fluid. Subtracting 
Eq. (13) from Eq. (12) gives 

r r [ - A  HS,  r H S  r Amix Ax Ax ' 7 2~zp 
R T -- ~ + L - ~ r  "--~ " J + - ~  [ lmix - lx ] (14) 

with 

= go (r, p, {din,}) dr 
i j JJdij 

and 

E; ] I~= Ux(r ) Hs dz) r 2 gx (r,p, dr 

If the hypothetical pure fluid is chosen according to the VDW-1 fluid 
model, Eqs. (6)-(11), then Eq. (14) represents a mixture model which gives 
a correction term for the effect of size on the VDW-1 fluid model. 

In order to apply this model, the effective hard sphere diameters for 
the components, do, and the equivalent hard sphere diameter of the pure 
fluid, d~, must be specified. Possible choices include the Barker-Henderson 
diameter 1-15], the temperature-dependent part of the Chandler-Weeks- 
Andersen diameter [16], and the empirical correlation of Elliot and 
Daubert [17]. In this work, the calculations were insensitive to the choice 
of do, and thus we chose simply to set d o equal to the Lennard-Jones a o. 

H S  H S  A mixing rule to determine d x can be found by setting Amix=A~ . An 
alternative mixing rule for the determination of dx can be found by forcing 

H S  H S  
Z m i  x = Z x , resulting i n  

3 H S  3 H S  ~ x , x j d o g  U ( d o ) = d x g  x (dx) (15) 
i j 

which permits us to solve for dx in terms of the do, the mole fractions xi, 
and the hard sphere contact values of the radial distribution functions. For 
the hard sphere contact values we used the Percus-Yevick virial values 
[-18, 19]. In our Lennard-Jones studies, we found the mixing rule Eq. (15) 
generally superior to the mixing rule obtained by setting AHm s = Ax us, and 
we therefore report results using only Eq. (15). 

The integral terms, Imix and Ix, are found using the Lennard-Jones 
potential function. This requires evaluation of the hard sphere radial dis- 
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tribution functions for both pure fluids and mixtures, not just at contact, 
but as a function of r. This may be done numerically using the algorithm 
of Perram [20] to generate the hard sphere distribution functions and 
numerically evaluating the integrals. The calculational time, however, may 
be significantly reduced by expressing the integrals in terms of Laplace 
transforms, as shown in Refs. 21 and 22. The advantage of this formulation 
is that the Laplace transforms of the hard sphere radial distribution func- 
tions have been found analytically for the Percus-Yevick approximation 
[23] and may be computed rapidly. 

3. COMPARISONS WITH L E N N A R D - J O N E S  SIMULATION DATA 

The hard sphere corrected van der Waals model (VDW-HSC), as 
given by Eqs. (12)-(15), was tested by comparing with computer simula- 
tion data for binary Lennard-Jones 6-12 mixtures. The equation of state of 
Nicolas et al. [241 for Lennard-Jones fluids was used in the conformal 
solution calculations. Table I shows comparisons of predicted pressures 
with the simulation data of Ely and Huber [25], for a size ratio (a22/a11) 
of two and a range of compositions and energy ratios. Table I also includes 
the predictions obtained from the uncorrected VDW-1 model and the per- 
turbation theory of Lee and Levesque [26]. The VDW-HSC is generally 
superior to VDW-1 for these mixtures, especially in the mid-composition 
ranges. The improvement in pressure prediction over VDW-1 is very good 
for the 0.25, 0.50, and 0.75 mole fractions, especially at the largest energy 
ratio. At these compositions, the perturbation theory gives the best predic- 
tions. The VDW-HSC does, however, seem to represent the composition 
extremes better than the perturbation theory, except at the lowest energy 
ratio. 

Table II gives comparisons for density prediction using the simulation 
data of Shukla and Haile [27] for equimolar mixtures with equal energies, 
at several size ratios. The VDW-HSC is superior to VDW-1, especially 
when the Size ratio is large, although the perturbation theory is slightly 
better. In Table II the version of perturbation theory is that given by 
Shukla and Haile [27, 28], which combines elements of the Lee-Levesque 
and Grundke-Henderson [29] perturbation theories, along with an 
improved method of finding the hard sphere diameter. 

4. REAL FLUID MIXTURE RESULTS 

In order to extend the conformal solution calculations with the 
VDW-HSC model to real fluids, the pure fluids must first be made confor- 
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mal. This is done using the extended corresponding states formalism 
described in Section 1. Propane was chosen as the reference fluid, and its 
properties were calculated with a 32-term BWR equation of state [30]. 
Binary interaction parameters were set to zero. 

In addition, the correction terms to the VDW-1 conformal solution 
model, which involve integrals of the potential functions [see Eq. (14)], 

Table I. Equation of State Comparisons for Lennard-Jones Mixtures with 
a22/an = 2, T *  = 2; Percentage Deviations of Pressure for 

Simulation Data of Ely and H u b e r  [ 2 5 ]  

x 1 ~22/~11 p* p *  V D W  V D W - H S C  P T "  

0.05 0.5 0 .0910  0.5073 - 2 . 6 7  - - 2 . 1 8  - 0 . 5 4  

0 .10 0.5 0 .0945 0 .5072  - 3 . 4 7  - 2 . 5 6  - 0 . 6 7  

0.25 0.5 0 .1070  0 .5090  - 5.70 - 4.00 - 1.53 

0.50 0.5 0.1371 0 .5093 - 7 . 1 0  - 5 . 8 4  - 2 . 8 9  

0.75 0.5 0.1901 0.5005 - 4 . 1 3  - 5 . 3 8  - 3 . 7 7  

0.90 0.5 0 .2470  0.4941 - 0.77 - 2.92 - 3.67 

0.95 0.5 0 .2742  0 .4956 - 0 . 3 6  - 1 . 9 1  - 3 . 4 5  

0.05 1.0 0 .0979 0 .5100  - 3.93 - 2.15 - 2.87 

0 .10 1.0 0 .1019 0.5093 - 6.22 - 2.86 - 2.96 

0.25 1.0 0 .1170 0 .5212  - -  12.12 - 5.21 - 3.45 

0.50 1.0 0 .1530  0 .5252  - -  17.25 - 9 . 1 0  - 5 . 0 0  

0.75 1.0 0 .2180  0.5197 " -  12.07 - 8 . 7 5  - 5 . 7 4  

0.90 1.0 0 .2800  0 .5122 - 3.86 - 4.52 - 5.79 

0.95 1.0 0.2981 0 .5050 - 1.70 - 2.57 - 4.95 

0.05 1.5 0 .1050 0 .5052 - 5.78 - 1.55 - 2.90 

0.10 1.5 0 .1095 0 .5060  - 10.19 - 2 . 1 6  - 2 . 8 7  

0.25 1.5 0 .1260  0.5183 - 2 1 . 7 2  - 4 . 9 7  - 3 . 4 8  

0.50 1.5 0 .1650  0.4968 - 3 1 . 3 3  - 9 . 5 4  - 4 . 4 0  

0.75 1.5 0 .2435 0 .5440 - 2 4 . 2 2  - 10.49 - 5.12 

0 .90 1.5 0 .3058 0 .5077 - -  7.13 - - 4 . 7 6  - -  6.48 

0.95 1.5 0 .3215 0.5161 - 3 . 1 1  - - 2 . 8 8  - 6 . 1 5  

0.05 2.0 0 . ! 1 1 3  0 .5107 - 9.69 - -  1.78 - 2 . 6 5  

0.10 2.0 0 .1162 0 .5146  - 16.82 - 1.73 - 2 . 8 0  

0.25 2.0 0 .1338 0 .5207  - 35.49 - 3.70 - 3.36 

0 .50 2.0 0 .1772  0 .5042 - 51.10 - 7.09 - 4.19 

0.75 2.0 0.2571 0 .4799 - -  38.40 - 8.08 - 5.77 

0 .90 2.0 0 .3315 0 .5112 - - 1 2 . 4 4  - 4 . 8 7  - 9 . 0 4  

0.95 2.0 0 .3387 0 .5123 - 4.28 - 2.62 - 7.86 

Overall avg. absolute 12.61 4.51 4.08 

Percentage deviation 

p* = p~]l,  p* = p~1~11,  T* = kT/~H 

a Perturbation theory of Lee and L e v e s q u e  [-26].  
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Table II. Comparison of Density Prediction for Equimolar Lennard-Jones 
Mixtures with Equal Energy Ratios; Percentage Deviations of Density from 

Simulation Data of Shukla and Halle 1-27] 

T* P* p* •22/all VDW VDW-HSC PT" 

1.0 0.5 015319 1.25 1.07 0.06 0.62 
1.0 0.5 0.3762 1.50 3.00 0.07 0.16 
1.0 0.5 0.2400 1.85 6.38 0.70 - 0.25 
1.0 0.5 0.2008 2.00 7.87 1.15 -0 .35 

2.0 1.2 0.4091 1.25 2.08 1.53 1.86 
2.0 1.2 0.3142 1.50 2.90 1.47 1.02 
2.0 1.2 0.2418 1.75 4.14 1.58 0.25 
2.0 1.2 0.1875 2.00 5.87 2.11 -0.11 

3.0 2.5 0.4133 1.25 1.31 1.14 0.53 
3.0 2.5 0.3232 1.50 2.38 1.57 0.37 
3.0 2.5 0.2527 1.75 3.68 1.92 - 0.04 
3,0 2.5 0.1992 2.00 5.07 2.20 -0 .55  

Overall avg. absolute 3.81 1.29 0.51 
Percentage deviation 

p*  = pa~l  , p *  : p a ~ l / e , ,  , T *  : k T/e  H 

a Perturbation theory of Shukla and Haile [27, 28]. 
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must be computed. Thus, effective Lennard-Jones potential parameters for 
propane, which in principle are functions of temperature, density and com- 
position, must be found. In this work, an average value for the potential 
parameters was found by optimizing PVT or phase equilibrium results over 
a range of temperatures, compositions, and densities. The results were sen- 
sitive to the values of the propane Lennard-Jones parameters, and we also 
found that the optimum value of %/k and a o for PVT calculations differed 
from that for phase equilibria, suggesting that our method of using an 
average %/k and 0-o is too crude. The results do, however, provide an idea 
of the type of improvement in predictive capability possible with this 
approach. 

Figure 1 shows the percentage error in density prediction for the 
VDW-1 method (circles) and VDW-HSC (squares), for a methane-heptane 
system [31]. This system has a size ratio O ' 2 2 / 0 " 1 1  of 1.64 and an energy 
ratio ~22/eu of 2.83. Figure 2 shows the results for the percent error in den- 
sity prediction for a methane-decane system [-32], which has size ratio 1.83 
and energy ratio 3.24. For methane, exact shape factors were found by 
pointwise mapping onto the reference fluid, while a generalized method was 
used for the heptane and decane shape factors [33]. The calculations were 
made using effective average potential parameters of 0-o = 0.4848 nm and 
eo/k = 179.52 K. The improvement with VDW-HSC is quite good for both 
the methane heptane and the methane-decane systems. 

Table III compares the Henry's constant of methane in decane for the 
VDW-1 and VDW-HSC models with the experimental data of Beaudoin 
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Table III. Henry's Law Constant for Methane in Decane; 
Experimental Data from Ref.34 

95 

% error 
Henry's constant 

T (K) p (tool. dm-3) (bar) VDW-1 VDW-HSC 

248.15 5.374 138 -66  - 14 
273.15 5.239 168 -55  -8.3 
298.15 5.104 193 -46  -2.1 
323.15 4.971 215 -36  2.8 
348.15 4.835 239 -29 3.8 
373.15 4.696 260 -23 3.5 
423.15 4.400 283 -14  3.5 

and K o h n  [-34]. F o r  the V D W - H S C ,  a o = 0 . 4 5 7 0 n m ,  e o / k = 1 4 5 K .  

Table  I I I  shows tha t  the V D W - H S C  mode l  gives much  bet ter  predic t ions  
than  the VDW-1.  

5. C O N C L U S I O N S -  

A modif ied  van der  Waa l s  1-fluid theory  has been deve loped  which 
uses a ha rd  sphere cor rec t ion  term that  accounts  for size differences in 
mixtures.  The  mode l  has been tested on mode l  L e n n a r d - J o n e s  b ina ry  
mixtures  and  found to be super ior  to V D W - 1  theory,  a l though  not  quite 
as g o o d  as pe r t u rba t i on  theory.  The  model  has been extended to per form 
calcula t ions  on real fluid mixtures  using extended cor responding-s ta tes  
theory.  Sample  P V T  calcula t ions  on m e t h a n e - d e c a n e  and  m e t h a n e -  
hep tane  and  Henry ' s  cons tan t  ca lcula t ions  for m e t h a n e - d e c a n e  show the 
mode l  to be a significant improvemen t  over  VDW-1  fluid theory.  
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